Connect with us

IN THE NEWS

PARASITIC PLANTS DWELL IN DARKNESS FEEDING ON MOLD AND MUSHROOMS

They have great taste.

You might be under the impression that plants photosynthesize—using energy from the sun to turn carbon dioxide and water into delicious and nutritious sugar—and you’re mostly right. Even carnivorous plants like the Venus flytrap practice this process to some extent (though nutrient-poor environments and inefficiency often lead them to supplement their diets with something a little bloodier). But not all flora are capable of feeding off of the sun. Some long ago abandoned this ability, having evolved other ways of gathering nutrients.

You might be under the impression that plants photosynthesize—using energy from the sun to turn carbon dioxide and water into delicious and nutritious sugar—and you’re mostly right. Even carnivorous plants like the Venus flytrap practice this process to some extent (though nutrient-poor environments and inefficiency often lead them to supplement their diets with something a little bloodier). But not all flora are capable of feeding off of the sun. Some long ago abandoned this ability, having evolved other ways of gathering nutrients.

And where do they turn? To fungi, of course. Just as some fungi have evolved to feed off of plants, some plants grab all their snacks from the fungal kingdom. They can’t break down matter in the ground to make their own food, but they can make a meal out of an industrious fungus, feeding off of molds and mushrooms that are usually parasites themselves. Yes, in a Revenge of the Plants twist, the fungi that these atypical plants usually favor as a food source tend to be parasites of more conventional photosynthesizing plants.

Earlier this week, scientists announced a new species of one of these “mycoheterotrophic” (translation: things that are not fungi that eat fungi to survive) plants. It’s called Sciaphila sugimotoi—after a Mr. Takaomi Sugimoto who collected the samples used in the study—and it was spotted on Ishigaki Island in Japan. The researchers who described it in the journal Phytotaxa are specifically working on categorizing the mysterious mycoheterotrophic species of Japan: the species tend to be scrawny—it’s not like you grow a bunch of lush green leaves when you’re not photosynthesizing—and they rarely peak up above the ground. In this, these plants are very much like their moldy, mushroom-y prey. Even if a fungus pops some fruiting bodies (otherwise known as mushrooms) up over the surface, most of their bulk is made up of web-like fibers called mycelium that run through the dirt.

Sciaphila sugimotoi
SUGIMOTO Takaomi

With an all-you-can-eat buffet located underground, species like Sciaphila sugimotoionly peak out at the sun during short flowering periods, when they tend to produce very small blossoms. S. sugimotoi reaches max heights of just under four inches, according to the researchers, and its violet flowers are around two millimeters across. In other words, it’s not surprising that these types of plants are still waiting to be discovered.

These fantastic examples of the ingenuity of evolution are sadly already in peril: the researchers who’ve named them recommend they be listed as critically endangered, because they’ve only ever been spotted in two locations on the same island. A plant that relies on a fungus for food is a delicate thing. If the local ecosystem flounders in any way, the fragile mycelium-based food web is liable to fall apart. More research is needed to track these intriguing plants down—and figure out what it will take to keep them safe.

IN THE NEWS

The cambodian cure for resistant scabies mites

A member shares his story in how he was cured from resistant scabies mites in Cambodia. Where ivermectin and permethrin failed a local monk in a small town in Cambodia combated it with natural herbs and ancient remedies

www.humanparasites.org
Facebook group: Human Parasites Support Network

Continue Reading

IN THE NEWS

New Lyme disease tests could offer quicker, more accurate detection

New tests to detect early Lyme disease — which is increasing beyond the summer months -could replace existing tests that often do not clearly identify the infection before health problems occur.

In an analysis published on December 7 in Clinical Infectious Diseases, scientists from Rutgers University, Harvard University, Yale University, National Institute of Allergy and Infectious Diseases of the NIH and other academic centers, industry and public health agencies say new diagnostic methods offer a better chance for more accurate detection of the infection from the Lyme bacteria.

“New tests are at hand that offer more accurate, less ambiguous test results that can yield actionable results in a timely fashion,” said Steven Schutzer, a physician-scientist at Rutgers New Jersey Medical School and senior author. “Improved tests will allow for earlier diagnosis which should improve patient outcomes.”

Lyme disease is the most common tick-borne infection in North America and Europe. There are currently over 300,000 cases of Lyme disease annually in the United States alone and the disease is increasing and spreading into new regions. Lyme disease frequently, but not always, presents with a bull’s-eye rash. When the rash is absent, a laboratory test is needed.

The only FDA approved Lyme disease tests, based on technology developed more than two decades ago, rely on detecting antibodies that the body’s immune system makes in response to the disease. These antibody-based tests are the most commonly used tests for Lyme disease and are the current standard.

One problem, however, is that many people produce similar — called “cross-reactive” — antibodies in response to other bacteria not associated with Lyme disease, which causes confusing results and makes test accuracy more difficult.

“New tests are more exact and are not as susceptible to the same false-positive or false-negative results associated with current tests,” said Schutzer.

Schutzer and his colleagues say more accurate testing would help doctors decide when to prescribe the antibiotics used to clear the infection and help avoid severe long-term health problems. Antibody tests, can take three weeks or more for the antibody levels to reach a point where the tests can pick up a positive result.

Those involved in the paper joined forces after meeting at Cold Spring Harbor Laboratory’s Banbury Center, a nonprofit research institution in New York. The meeting organized and chaired by Schutzer and John A. Branda, assistant professor of pathology at Harvard Medical School, focused on current Lyme disease tests and new scientific advances made in increasing the accuracy of the diagnosis.

“This meeting and paper resulting from it are particularly significant,” said Jan Witkowski, professor in the Watson School of Biological Sciences at Cold Spring Harbor Laboratory who along with Nobel Laureate James Watson asked Schutzer to lead several symposia. “The participants noted that there are greatly improved diagnostic tests for Lyme disease that can be implemented now, and that the way is open to the development of further tests.”

Story Source:

Materials

provided by Rutgers University. Original written by Robin Lally.


Journal Reference:

  1. John A Branda, Barbara A Body, Jeff Boyle, Bernard M Branson, Raymond J Dattwyler, Erol Fikrig, Noel J Gerald, Maria Gomes-Solecki, Martin Kintrup, Michel Ledizet, Andrew E Levin, Michael Lewinski, Lance A Liotta, Adriana Marques, Paul S Mead, Emmanuel F Mongodin, Segaran Pillai, Prasad Rao, William H Robinson, Kristian M Roth, Martin E Schriefer, Thomas Slezak, Jessica Snyder, Allen C Steere, Jan Witkowski, Susan J Wong, Steven E Schutzer. Advances in Serodiagnostic Testing for Lyme Disease Are at HandClinical Infectious Diseases, 2017; DOI: 10.1093/cid/cix943
Continue Reading

IN THE NEWS

Possible new way to treat parasitic infections discovered

A chemical that suppresses the lethal form of a parasitic infection caused by roundworms that affects up to 100 million people and usually causes only mild symptoms has now been identified by researchers.

 

UT Southwestern Medical Center researchers have identified a chemical that suppresses the lethal form of a parasitic infection caused by roundworms that affects up to 100 million people and usually causes only mild symptoms.

“The approach we used could be applied generally to any nematode parasite, not just this one type,” said Dr. David Mangelsdorf, Chair of Pharmacology, an Investigator in the Howard Hughes Medical Institute (HHMI), and one of three corresponding authors of the study published in the Proceedings of the National Academy of Sciences. The study’s other corresponding authors are at two universities in Philadelphia.

“The plan is to develop better compounds that mimic the Δ7-dafachronic acid used in this study and eventually to treat the host to stop parasitic infection,” he added.

The Centers for Disease Control and Prevention (CDC) reports that the soil-dwelling Strongyloides stercoralis nematode, or roundworm, is the primary strongyloides species that infects humans. Experts estimate that between 30 million and 100 million people are infected worldwide, and most of them are unaware of it because their symptoms are so mild. The parasite can persist for decades in the body because of the nematode’s unique ability to reinfect the host, repeatedly going through the early stages of its life cycle. The nematode that causes the original infection exists in dirt on all continents except Antarctica, and it is most common in warmer regions, particularly remote rural areas in the tropics and subtropics where walking barefoot combined with poor sanitation leads to infection.

However, in people with compromised immune systems — such as those using long-term steroids for asthma, joint pain, or after an organ transplant — the mild form of the illness can progress to the potentially lethal form, a situation called hyperinfection. Studies indicate that mortality from untreated hyperinfection can be as high as 87 percent.

The World Health Organization reports that although the parasitic illness has almost disappeared in countries where sanitation has improved, children remain especially vulnerable in endemic regions due to their elevated contact with dirt. Further, the drug of choice, ivermectin, is unavailable in some affected countries.

“Ivermectin is used to treat the disease but is less effective in the lethal form of the infection,” said Dr. Mangelsdorf, a Professor of Pharmacology and Biochemistry. “We do not know exactly how the glucocorticoid [steroid] causes hyperinfection, but once it does, ivermectin is much less effective, prompting the search for new drugs. The new drug we used in our mouse model appears to be very effective,” he said.

To study the still unknown pathogenesis of the disease, the researchers developed a mouse model susceptible to the full range of infection by the human parasite. Because mice with intact immune systems are resistant to S. stercoralis infection, the researchers began with an immunocompromised strain of mice, and then exposed some to a synthetic steroid called methylprednisolone (MPA) that is commonly used to treat asthma in humans.

The mice were then exposed to the parasitic worms. Compared with untreated mice, those that received the steroid showed a tenfold increase in the number of parasitic female worms and a 50 percent increase in mortality, said Dr. Mangelsdorf, who holds both the Alfred G. Gilman Distinguished Chair in Pharmacology and the Raymond and Ellen Willie Distinguished Chair in Molecular Neuropharmacology in Honor of Harold B. Crasilneck, Ph.D.

In addition, third-stage larvae — the life cycle stage in which the worms can initiate hyperinfection — were found in higher numbers in the steroid-treated versus untreated mice, he added.

“Strikingly, treatment with a steroid hormone called Δ7-dafachronic acid, a chemical that binds to a parasite nuclear receptor called Ss-DAF-12, significantly reduced the worm burden in MPA-treated mice,” Dr. Mangelsdorf said. The Ss-DAF-12 receptor corresponds to a similar receptor in the long-studied C. elegans worm.

Dr. Mangelsdorf and colleagues previously showed (PNAS, 2009) that the DAF-12 receptor pathway is found in many parasitic species. They also showed that activating the receptor with Δ7-dafachronic acid could override the parasite’s development and prevent S. stercoralis from becoming infectious.

“Overall, this latest study provides a useful mouse model for S. stercoralis autoinfection and opens the possibility of new chemotherapy for hyperinfection by targeting the parasite’s own steroid hormone mechanism,” Dr. Mangelsdorf said.

Story Source:

Materials

provided by UT Southwestern Medical Center.


Journal Reference:

  1. John B. Patton, Sandra Bonne-Année, Jessica Deckman, Jessica A. Hess, April Torigian, Thomas J. Nolan, Zhu Wang, Steven A. Kliewer, Amy C. Durham, James J. Lee, Mark L. Eberhard, David J. Mangelsdorf, James B. Lok, David Abraham. Methylprednisolone acetate induces, and Δ7-dafachronic acid suppresses,Strongyloides stercoralishyperinfection in NSG miceProceedings of the National Academy of Sciences, 2018; 201712235 DOI: 10.1073/pnas.1712235114
Continue Reading

#Parasites

Q) How many #jews duhhhz it take ta’ turn the one-time world’z strongest constitu- tional republic, home to a majority of non-jew Germans into W 🐛 R M W O O D ? A) We’re learning, daily. #parasites #BackToTheBoat

test Twitter Media - Q) How many #jews duhhhz
it take ta’ turn the one-time
world’z strongest constitu-
tional republic, home to a
majority of non-jew Germans
into

     W  🐛  R  M  W  O  O  D  ?

A) We’re learning, daily.

#parasites
#BackToTheBoat https://t.co/cWt7Fl263J

@Katievanslyke My meat has tonbe cooked thoroughly because i dont want any #parasites growing in or taking over my body

#Ivermectin

Treatment with #azithromycin plus #ivermectin versus ivermectin alone provides equal protection against #scabies & #impetigo in at-risk communities, new @LSHTM study finds contagionlive.com/link/1284

test Twitter Media - Treatment with #azithromycin plus #ivermectin versus ivermectin alone provides equal protection against #scabies & #impetigo in at-risk communities, new @LSHTM study finds
https://t.co/auqSSLXTgk https://t.co/Z2373jvlQO

Trending