Connect with us

IN THE NEWS

Surfers three times more likely to have antibiotic-resistant bacteria in guts

Regular surfers and bodyboarders are three times more likely to have antibiotic resistant E. coli in their guts than non-surfers, new research has revealed.

Conducted by the University of Exeter, the Beach Bums study asked 300 people, half of whom regularly surf the UK’s coastline, to take rectal swabs. Surfers swallow ten times more sea water than sea swimmers, and scientists wanted to find out if that made them more vulnerable to bacteria that pollute seawater, and whether those bacteria are resistant to an antibiotic.

Scientists compared faecal samples from surfers and non-surfers to assess whether the surfers’ guts contained E. coli bacteria that were able to grow in the presence of cefotaxime, a commonly used and clinically important antibiotic. Cefotaxime has previously been prescribed to kill off these bacteria, but some have acquired genes that enable them to survive this treatment.

The study, published today (January 14) in the journal Environment International, found that 13 of 143 (9%) of surfers were colonised by these resistant bacteria, compared to just four of 130 (3%) of non-surfers swabbed. That meant that the bacteria would continue to grow even if treated with cefotaxime.

Researchers also found that regular surfers were four times as likely to harbour bacteria that contain mobile genes that make bacteria resistant to the antibiotic. This is significant because the genes can be passed between bacteria — potentially spreading the ability to resist antibiotic treatment between bacteria. Recently, the UN Environment Assembly recognised the spread of antibiotic resistance in the environment as one of the world’s greatest emerging environmental concerns.

Dr Anne Leonard, of the University of Exeter Medical School, who led the research, said: “Antimicrobial resistance has been globally recognised as one of the greatest health challenges of our time, and there is now an increasing focus on how resistance can be spread through our natural environments. We urgently need to know more about how humans are exposed to these bacteria and how they colonise our guts. This research is the first of its kind to identify an association between surfing and gut colonisation by antibiotic resistant bacteria.”

Despite extensive operations to clean up coastal waters and beaches, bacteria which are potentially harmful to humans still enters the coastal environment through sewage and waste pollution from sources including water run-off from farm crops treated with manure. In the paper, the authors demonstrated the prevalence of cefotaxime-resistant E. coli in UK bathing waters as well as the prevalence of the mobile resistance gene that make bacteria cefotaxime resistant. They estimated that over 2.5 million water sports sessions occurred in England and Wales in 2015 which involved ingestion of E. coli bacteria harbouring these mobile resistance genes. They found that surfers are particularly vulnerable to ingesting the bacteria because they swallow up to ten times more water than sea swimmers.

The World Health Organization has warned that we may be entering an era in which antibiotics are no longer effective to kill simple, and previously treatable, bacterial infections. This would mean that infections such as pneumonia, tuberculosis, blood poisoning, gonorrhoea, and food and waterborne diseases could be fatal. It would also mean that it would no longer be possible to use antibiotics to prevent infections in routine medical procedures, such as joint replacements and chemotherapy.

The 2016 O’Neill report commissioned by the UK government estimated that antimicrobial resistant infections could kill one person every three seconds by the year 2050 if current trends continue.

Up to now, solutions on addressing the issue have largely focussed on prescribing and use. However, increasing priority is being placed on the role of the environment in spreading the problem in addition to transmission within hospitals, between people and via food.

Dr Will Gaze, of the University of Exeter Medical School, supervised the research. He said: “We are not seeking to discourage people from spending time in the sea, an activity which has a lot of benefits in terms of exercise, wellbeing and connecting with nature. It is important that people understand the risks involved so that they can make informed decisions about their bathing and sporting habits. We now hope that our results will help policy-makers, beach managers, and water companies to make evidence-based decisions to improve water quality even further for the benefit of public health.”

The marine conservation charity Surfers Against Sewage, which is at the forefront of protecting bathing water quality and was involved in recruiting surfers to take part in the study.. Science and Policy Officer David Smith said: “While this research highlights an emerging threat to surfers and bodyboarders in the UK it should not prevent people from heading to our coasts. Water quality in the UK has improved vastly in the past 30 years and is some of the cleanest in Europe. Recognising coastal waters as a pathway for antibiotic resistance can allow policy makers to make changes to protect water users and the wider public from the threat of antibiotic resistance. We would always recommend water users check the Safer Seas Service before heading to the sea to avoid any pollution incidents and ensure the best possible experience in the UK’s coastal waters.”

The study was funded by the Natural Environment Research council and the European Regional Development Fund.

Story Source:

Materials

provided by University of ExeterNote: Content may be edited for style and length.


Journal Reference:

  1. Anne F.C. Leonarda, , , Lihong Zhanga, , , Andrew J. Balfoura, Ruth Garsidea, Peter M. Hawkeyb, Aimee K. Murraya, Obioha C. Ukoumunnec, William H. Gazea. Exposure to and colonisation by antibiotic-resistant E. coli in UK coastal water users: Environmental surveillance, exposure assessment, and epidemiological study (Beach Bum Survey)Environment Internationa, 2018 DOI: 10.1016/j.envint.2017.11.003
Continue Reading
Advertisement
Click to comment

IN THE NEWS

The cambodian cure for resistant scabies mites

A member shares his story in how he was cured from resistant scabies mites in Cambodia. Where ivermectin and permethrin failed a local monk in a small town in Cambodia combated it with natural herbs and ancient remedies

www.humanparasites.org
Facebook group: Human Parasites Support Network

Continue Reading

IN THE NEWS

New Lyme disease tests could offer quicker, more accurate detection

New tests to detect early Lyme disease — which is increasing beyond the summer months -could replace existing tests that often do not clearly identify the infection before health problems occur.

In an analysis published on December 7 in Clinical Infectious Diseases, scientists from Rutgers University, Harvard University, Yale University, National Institute of Allergy and Infectious Diseases of the NIH and other academic centers, industry and public health agencies say new diagnostic methods offer a better chance for more accurate detection of the infection from the Lyme bacteria.

“New tests are at hand that offer more accurate, less ambiguous test results that can yield actionable results in a timely fashion,” said Steven Schutzer, a physician-scientist at Rutgers New Jersey Medical School and senior author. “Improved tests will allow for earlier diagnosis which should improve patient outcomes.”

Lyme disease is the most common tick-borne infection in North America and Europe. There are currently over 300,000 cases of Lyme disease annually in the United States alone and the disease is increasing and spreading into new regions. Lyme disease frequently, but not always, presents with a bull’s-eye rash. When the rash is absent, a laboratory test is needed.

The only FDA approved Lyme disease tests, based on technology developed more than two decades ago, rely on detecting antibodies that the body’s immune system makes in response to the disease. These antibody-based tests are the most commonly used tests for Lyme disease and are the current standard.

One problem, however, is that many people produce similar — called “cross-reactive” — antibodies in response to other bacteria not associated with Lyme disease, which causes confusing results and makes test accuracy more difficult.

“New tests are more exact and are not as susceptible to the same false-positive or false-negative results associated with current tests,” said Schutzer.

Schutzer and his colleagues say more accurate testing would help doctors decide when to prescribe the antibiotics used to clear the infection and help avoid severe long-term health problems. Antibody tests, can take three weeks or more for the antibody levels to reach a point where the tests can pick up a positive result.

Those involved in the paper joined forces after meeting at Cold Spring Harbor Laboratory’s Banbury Center, a nonprofit research institution in New York. The meeting organized and chaired by Schutzer and John A. Branda, assistant professor of pathology at Harvard Medical School, focused on current Lyme disease tests and new scientific advances made in increasing the accuracy of the diagnosis.

“This meeting and paper resulting from it are particularly significant,” said Jan Witkowski, professor in the Watson School of Biological Sciences at Cold Spring Harbor Laboratory who along with Nobel Laureate James Watson asked Schutzer to lead several symposia. “The participants noted that there are greatly improved diagnostic tests for Lyme disease that can be implemented now, and that the way is open to the development of further tests.”

Story Source:

Materials

provided by Rutgers University. Original written by Robin Lally.


Journal Reference:

  1. John A Branda, Barbara A Body, Jeff Boyle, Bernard M Branson, Raymond J Dattwyler, Erol Fikrig, Noel J Gerald, Maria Gomes-Solecki, Martin Kintrup, Michel Ledizet, Andrew E Levin, Michael Lewinski, Lance A Liotta, Adriana Marques, Paul S Mead, Emmanuel F Mongodin, Segaran Pillai, Prasad Rao, William H Robinson, Kristian M Roth, Martin E Schriefer, Thomas Slezak, Jessica Snyder, Allen C Steere, Jan Witkowski, Susan J Wong, Steven E Schutzer. Advances in Serodiagnostic Testing for Lyme Disease Are at HandClinical Infectious Diseases, 2017; DOI: 10.1093/cid/cix943
Continue Reading

IN THE NEWS

Possible new way to treat parasitic infections discovered

A chemical that suppresses the lethal form of a parasitic infection caused by roundworms that affects up to 100 million people and usually causes only mild symptoms has now been identified by researchers.

 

UT Southwestern Medical Center researchers have identified a chemical that suppresses the lethal form of a parasitic infection caused by roundworms that affects up to 100 million people and usually causes only mild symptoms.

“The approach we used could be applied generally to any nematode parasite, not just this one type,” said Dr. David Mangelsdorf, Chair of Pharmacology, an Investigator in the Howard Hughes Medical Institute (HHMI), and one of three corresponding authors of the study published in the Proceedings of the National Academy of Sciences. The study’s other corresponding authors are at two universities in Philadelphia.

“The plan is to develop better compounds that mimic the Δ7-dafachronic acid used in this study and eventually to treat the host to stop parasitic infection,” he added.

The Centers for Disease Control and Prevention (CDC) reports that the soil-dwelling Strongyloides stercoralis nematode, or roundworm, is the primary strongyloides species that infects humans. Experts estimate that between 30 million and 100 million people are infected worldwide, and most of them are unaware of it because their symptoms are so mild. The parasite can persist for decades in the body because of the nematode’s unique ability to reinfect the host, repeatedly going through the early stages of its life cycle. The nematode that causes the original infection exists in dirt on all continents except Antarctica, and it is most common in warmer regions, particularly remote rural areas in the tropics and subtropics where walking barefoot combined with poor sanitation leads to infection.

However, in people with compromised immune systems — such as those using long-term steroids for asthma, joint pain, or after an organ transplant — the mild form of the illness can progress to the potentially lethal form, a situation called hyperinfection. Studies indicate that mortality from untreated hyperinfection can be as high as 87 percent.

The World Health Organization reports that although the parasitic illness has almost disappeared in countries where sanitation has improved, children remain especially vulnerable in endemic regions due to their elevated contact with dirt. Further, the drug of choice, ivermectin, is unavailable in some affected countries.

“Ivermectin is used to treat the disease but is less effective in the lethal form of the infection,” said Dr. Mangelsdorf, a Professor of Pharmacology and Biochemistry. “We do not know exactly how the glucocorticoid [steroid] causes hyperinfection, but once it does, ivermectin is much less effective, prompting the search for new drugs. The new drug we used in our mouse model appears to be very effective,” he said.

To study the still unknown pathogenesis of the disease, the researchers developed a mouse model susceptible to the full range of infection by the human parasite. Because mice with intact immune systems are resistant to S. stercoralis infection, the researchers began with an immunocompromised strain of mice, and then exposed some to a synthetic steroid called methylprednisolone (MPA) that is commonly used to treat asthma in humans.

The mice were then exposed to the parasitic worms. Compared with untreated mice, those that received the steroid showed a tenfold increase in the number of parasitic female worms and a 50 percent increase in mortality, said Dr. Mangelsdorf, who holds both the Alfred G. Gilman Distinguished Chair in Pharmacology and the Raymond and Ellen Willie Distinguished Chair in Molecular Neuropharmacology in Honor of Harold B. Crasilneck, Ph.D.

In addition, third-stage larvae — the life cycle stage in which the worms can initiate hyperinfection — were found in higher numbers in the steroid-treated versus untreated mice, he added.

“Strikingly, treatment with a steroid hormone called Δ7-dafachronic acid, a chemical that binds to a parasite nuclear receptor called Ss-DAF-12, significantly reduced the worm burden in MPA-treated mice,” Dr. Mangelsdorf said. The Ss-DAF-12 receptor corresponds to a similar receptor in the long-studied C. elegans worm.

Dr. Mangelsdorf and colleagues previously showed (PNAS, 2009) that the DAF-12 receptor pathway is found in many parasitic species. They also showed that activating the receptor with Δ7-dafachronic acid could override the parasite’s development and prevent S. stercoralis from becoming infectious.

“Overall, this latest study provides a useful mouse model for S. stercoralis autoinfection and opens the possibility of new chemotherapy for hyperinfection by targeting the parasite’s own steroid hormone mechanism,” Dr. Mangelsdorf said.

Story Source:

Materials

provided by UT Southwestern Medical Center.


Journal Reference:

  1. John B. Patton, Sandra Bonne-Année, Jessica Deckman, Jessica A. Hess, April Torigian, Thomas J. Nolan, Zhu Wang, Steven A. Kliewer, Amy C. Durham, James J. Lee, Mark L. Eberhard, David J. Mangelsdorf, James B. Lok, David Abraham. Methylprednisolone acetate induces, and Δ7-dafachronic acid suppresses,Strongyloides stercoralishyperinfection in NSG miceProceedings of the National Academy of Sciences, 2018; 201712235 DOI: 10.1073/pnas.1712235114
Continue Reading

#Parasites

#SwimmersItch is a rash usually caused by an allergic reaction to #parasites that burrow into your skin while you're swimming or wading in warm water. These tips may reduce the itch: mayocl.in/2t7dkHn. #HomeRemedies

test Twitter Media - #SwimmersItch is a rash usually caused by an allergic reaction to #parasites that burrow into your skin while you're swimming or wading in warm water. These tips may reduce the itch: https://t.co/YImO6yV3ZY. #HomeRemedies https://t.co/kYa9awHWUd

#Ivermectin

"The pharmaceutical giant @Merck, which makes #Mectizan, the brand-name version of #ivermectin"🇨🇦 What I'm thinking is, can these drugs be helpful with #LymeDisease from #tics, or any other wee beastie attached to humans, resistant #lice, maybe🧐🤔🔬#StudyIt #Hmmm

"#Merck, which makes #Mectizan, the brand-name version of #ivermectin" So I just came across this VERY interesting information I'd never heard of, before, I didn't know that life-saving & significant healing #drugs are blocked by companies if there isn't enough #profit🤨🤔🧐

#Hmm #medicine #WhoKnew? The pharmaceutical giant Merck, which makes Mectizan, the brand-name version of #ivermectin Why world-beating tropical drugs are so hard to get in Canada /via @globeandmail theglobeandmail.com/news/national/…

outbreaknewstoday.com/river-blindnes… #onchocerciasis @US_FDA approval of #moxidectin was based on data from 2 randomized, double blind, active controlled clinical studies. Each study showed statistically significant superiority of moxidectin over current standard of care #ivermectin @TDRnews

Trending